Photon statistics of high- β quantum dot photonic-crystal lasers

Y.-S. Choi¹, M. T. Rakher², S. Strauf^{2,3}, K. Hennessy¹, A. Badolato¹, D. Bouwmeester², P. M. Petroff^{1,3}, and E. L. Hu^{1,3}

¹ECE, ²Physics, ³Materials, University of California, Santa Barbara, California 93106

We demonstrate the photon statistics of InAs quantum-dot (QD) photonic-crystal (PC) lasers with high spontaneous emission coupling factors, $\beta > 0.25$. Such high β factors lead to the onset of lasing at incident pump powers < 40 W/cm² and pronounced linewidth narrowing above threshold. Measurements of the second-order correlation function, $g^{(2)}(T)$, confirm that a transition of the photon statistics from random spontaneous emission to coherent stimulated emission occurs. We then use the Fano-Mandel parameter^[1], $F = [\langle a^+aa^+a \rangle - \langle a^+a \rangle^2] / \langle a^+a \rangle$, to demonstrate the first direct identification of lasing threshold in high- β , soft-turn-on devices.

With further optimization of QD placement using active positioning schemes^[2], we expect to realize a thresholdless laser operating on a single QD.

- [1] R. Loudon, *The Quantum Theory of Light* (Oxford University, New York, 2000)
- [2] A. Badolato, K. Hennessy, M. Atature et. al. in publication, Science (2005).